

UNCLASSIFIED: Distribution Statement A. Approved for public release

2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY
SYMPOSIUM

VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM
AUGUST 14-16, MICHIGAN

 OPEN MANAGEMENT GROUP DATA DISTRIBUTION SERVICE

(OMG-DDS) AS A DATA TRANSPORT FOR VEHICULAR INTEGRATION
FOR C4ISR/EW INTEROPERABILITY (VICTORY) SERVICES

Leonard Elliott

Vehicle Electronics and
Architecture

TARDEC
Warren, MI

 Nikia Williams
Vehicle Electronics and

Architecture
TARDEC

Warren, MI

 Venu Siddapureddy
Vehicle Electronics and Architecture

TARDEC
Warren, MI

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Department of the Army (DoA).
The opinions of the authors expressed herein do not necessarily state or reflect those of the United
States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

ABSTRACT

 A key objective of the Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Architecture is to use
open standards to increase the portability of C4ISR/EW systems and enhance interoperability within military
ground vehicles. When possible these technologies are adopted by VICTORY and when existing specifications are
inadequate, best-practices are used to develop the necessary adaptations. Many Commercial Off-The-Shelf (COTS)
publish/subscribe messaging solutions are available and the Open Management Group (OMG) Data-Distribution
Service (DDS) is one such technology that provides open interfaces, open data formats, and open protocols. This
paper will discuss the current VICTORY messaging approach and the benefits and disadvantages of using OMG-
DDS as a data transport for VICTORY services.

INTRODUCTION

The Vehicular Integration for C4ISR/EW Interoperability
(VICTORY) project is an initiative by the U.S. Army to
improve upon current military ground vehicle electronics
architecture. One of the key objectives for VICTORY is to
maximize C4ISR/EW portability by identifying open
standards to define 1) open interfaces, 2) open data formats,
and 3) open protocols [1]. The VICTORY standards are
developed by a government-industry standards body using
an adopt-adapt-author methodology [2]. The currently
defined scope of VICTORY does not support real-time or
safety-critical applications.

The VICTORY technical approach provides a data-bus
centric design, shareable hardware components, and shared
software services [2]. The data-bus centric design is

provided via shared software services (VICTORY services),
and the VICTORY Data-bus (VDB), which has Ethernet as a
core component. It is important to emphasize that
VICTORY is specified for intra-vehicle communication
where high network availability and control of network
topology by vehicle designers may be assumed.

VICTORY services have clearly defined management and
data interfaces. The management interfaces allow
VICTORY services to be monitored and controlled over the
VDB via the Simple Object Access Protocol (SOAP) and
remote procedure calls (RPC). Many of the data interfaces
supply data to consumers using customized VICTORY Data
Messages (VDM) and a simple form of publish-subscribe
(pub/sub) messaging that leverages UDP multicast. Many
commercial off-the-shelf (COTS) pub/sub messaging

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 2 of 7

technologies are readily available for use in architectures
such as VICTORY, but no apparent evaluation of these
technologies has been conducted by the VICTORY
workgroup. The choice of using customized message format
(i.e. VDM) and messaging behavior for VICTORY service
data interfaces seems to be an inconsistency in the
VICTORY adopt-adapt-author methodology.

In this paper, we will briefly discuss pub/sub messaging
and several commonly used COTS messaging technologies.
We will then discuss the VICTORY approach to pub/sub
data dissemination on the VDB. Finally we will discuss an
experiment which involved modifying a reference
implementation of the VICTORY core services developed
by the U.S. Army Tank and Automotive Research
Development and Engineering Center (TARDEC). The
experiment involved modifying the reference
implementation of the VICTORY 1.0 Position Service by
replacing the VDM data-interface with an OMG-DDS
interface and capturing notes regarding the effort required
and OMG-DDS interoperability. We will then compare the
VDM and OMG-DDS approaches.

PUBLISH-SUBSCRIBE OVERVIEW

Pub/sub communication is a messaging pattern that has the
benefit of providing loose-coupling and scalability by
allowing senders to push messages to receivers without
explicitly having to maintain information about receivers or
their connection states. Three COTS messaging systems that
support this integration pattern are described below.

Java Message Service (JMS)

JMS is a Java application programming interface (API)
specification that debuted in 2001 and is typically
implemented in a centralized or brokered architecture. JMS
provides messages, channels, queues, and other constructs
for supporting many loosely-coupled integration patterns.
JMS is typically implemented using a centralized or
brokered architecture. While JMS provides a standard Java
API, there is no standard wire protocol: therefore different
JMS messaging systems do not interoperate [3].

Advanced Message Queuing Protocol (AMQP)

AMQP is an application layer protocol which debuted in
2003 and is now an open standard governed by the
Organization for the Advancement of Structured Information
Standards (OASIS). AMQP is typically implemented using
a multi-brokered architecture and provides an on-the-wire
format for supporting messaging systems. AMQP does not
define a standard API [4].

Open Management Group Data-Distribution Service
(OMG-DDS)

OMG-DDS is an open standard that debuted in 2003 and
supports real-time pub/sub communication. OMG-DDS is
generally implemented in a peer-to-peer architecture (i.e.
middleware functions are spawned within the user-
application). OMG-DDS consists of two standards managed
under OMG, the Data Centric Publish-Subscribe (DCPS)
API standard and the Real-Time Publish Subscribe (RTPS)
protocol standard.

OMG-DDS will be highlighted because it:

• Is an open standard that is supported by multiple

vendors and programming languages.
• Provides mechanisms for supporting real-time and

high-performance communication.
• Is supported by both a standard API (DCPS) and

standard wire protocol (RTPS) allowing designers to
switch vendors with minimal code changes and
interoperate with systems developed using different
OMG-DDS implementations.

• Is usually implemented using a peer-to-peer
architecture, meaning that there are no brokers to act
as bottle necks or single points of failure.

The focus of VICTORY is interoperability which is
emphasized throughout this paper. OMG-DDS vendors
often provide useful and performance-enhancing extensions
to the OMG-DDS standard and some of these are later
integrated into the standard. An evaluation using only
standard OMG-DDS features was desired so special care
was taken to avoid these specializations.

VICTORY DATA MESSAGING

VICTORY specifies a customized messaging solution that
allows VICTORY services to support pub/sub
communication through their data interfaces. To disseminate
VDMs, VICTORY services utilize the standard Internet
Protocol version 4 (IPv4) User Datagram Protocol (UDP)
multicast and the IPv4 Internet Group Management Protocol
(IGMP) to manage subscribers. Information about
publishers is available to subscribers dynamically using Zero
Configuration Networking and SOAP RPCs to the service’s
management interface. Alternatively, information can be
made available to subscribers a priori via a VICTORY
Configuration Language Instance Document (VCLID) which
provides a static description of the system. Using the VDM
approach, services may access the management interfaces
via SOAP RPC to:

• Increase/decrease the VDM publishing frequency.
• Turn on/off VDM publishing.

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 3 of 7

• Change the multicast address for publishing.

VICTORY also supports the basic notion of Quality of
Service (QoS) by specifying that network components
support IPv4 Differentiated Service Code Point (DSCP), a 6-
bit field in the IP header that indicates IP packet traffic
priority.

VDMs consist of a binary formatted header with XML
payloads. Figure 1 illustrates the layout of the VDM format
with binary encoded information in blue and XML formatted
data in light green (see [2] for a more detailed description).

Figure 1: VICTORY Data Message Layout

The VDM structure supports many of the standard
messaging concepts including sequence numbers, format
indicators, identifiers, and timing information [3]. A notable
absence from the standard list of message attributes includes
the message expiration indicator, but given the scope of
VICTORY, and that a high-availability network on the
platform is assumed, the expiration mechanism may be
unnecessary. Alternatively the IPv4 mechanism known as
time to live (TTL), which governs how long datagrams
remain in the network, may serve as a rudimentary message
expiration date (although receivers will be unaware that the
expired message was ever sent).

Implementations of the VICTORY core services on Red
Hat Enterprise Linux (RHEL) have been developed at
TARDEC and have undergone thorough testing. These
services have been successfully ported to x86_64, i386, and
ARM Cortex-A8 architectures. All tests conducted so far
suggest that the VDM approach provides simple messaging
that can easily be implemented using standard POSIX

libraries (i.e. sys/sockets.h) on a variety of operating systems
(OS) and processor architectures.

INSERTION OF OMG-DDS INTO VICTORY
SERVICES

As mentioned in the Publish-Subscribe Overview section,
OMG-DDS appears to be a promising candidate for meeting
the integration requirements of those applications within the
military ground vehicle that require more complex pub/sub
communication (including those which fall into the real-time
scope). OMG-DDS incorporates many features including an
extensive QoS, service discovery, and automatic negotiation
of QoS.

One of the central concepts in OMG-DDS is the QoS
policy which provides a rich set of features that can be
changed within the application and sometimes without
recompiling (via vendor-specific extensions in XML
configurations). There are many parameters in the standard
QoS that are available for tuning publisher and subscriber
behavior. A few key QoS settings include:

• Deadline: The maximum time between data samples.
• Durability: Previously published data can be stored

and sent to late joining subscribers.
• Lifespan: Specifies how long data sent by user

application is considered valid.
• Liveliness: Allows readers to detect when matching

writers are no longer available.
• Ownership: Specifies ownership of a Topic by a

specific Data Writer.
• Reliability: Allows samples lost by the network to be

recovered by the middleware.
• Time Base Filter: Allows readers to specify a

minimum separation time for received samples.

In the following section we provide an overview of the
software architecture of the VICTORY core services
developed by the U.S. Army at TARDEC. We will then
discuss the steps taken to convert the VDM interfaces used
by the VICTORY 1.0 Position Service and the steps taken to
replace this service’s VDM data-interface with several
vendor implementations of OMG-DDS. The versions of
OMG-DDS used were Real-Time Innovations Inc. (RTI)
Connext DDS 4.5f and PrismTech’s OpenSplice 6.1.1.

VICTORY 1.0 Core Service Software Architecture

The reference implementation of VICTORY 1.0 core
services developed at TARDEC includes the Position,
Orientation, and Direction-of-Travel services. As their
names indicate, these services connect to sensors using
various physical connections, translate the
proprietary/controlled data formats to VICTORY formatting,

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 4 of 7

and publish the corresponding data on the VDB. The
VICTORY services developed at TARDEC use standard
POSIX libraries, C++, and Genivia gSOAP, a tool that
provides C/C++ bindings and support for SOAP, XML
Services Definition (XSD) and Web Service Definition
Language (WSDL). These services have three essential
processes (each implemented in a POSIX thread):

1. Connect to a sensor, interpret data, and update data

structures.
2. Read data structures, build and transmit VDMs.
3. Listen, accept, and serve SOAP management calls and

read or update data structures accordingly.

Figure 2 shows a high-level diagram of the VICTORY

Position Service and its interaction with the VDB. The
service connects to a Defense Advanced GPS Receiver
(DAGR) using RS-232 and publishes a VDM with the
position message. An example mapping application is
shown subscribing to the Position VDM, but in our
experiment the VDM subscriber simply reads, parses, and
displays the received data.

Figure 2: VICTORY Service Data Flow

Porting VDM Interfaces to OMG-DDS Interfaces

VICTORY defines all application interfaces, messages,
and data types inside of the WSDL and XSD files and these
files are a key product of each VICTORY version. OMG-
DDS utilizes another OMG standard known as Interface
Definition Language (IDL) to achieve a programming
language and platform independent data description. Once
these IDLs are defined, vendor-supplied tools are used to
generate language specific bindings (in our case C++).
Figure 3 shows a generalized excerpt from the VICTORY
1.0 schema that describes absolutePosition_t versus the
corresponding IDL type AbsPos_t that we defined as part of
our experiment (shown in Figure 4).

<xsd:simpleType name="latitudeBounds_t">
 <xsd:restriction base="xsd:double">
 <xsd:minInclusive value="-90"/>

 <xsd:maxInclusive value="90"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="longitudeBounds_t">
 <xsd:restriction base="xsd:double">
 <xsd:maxInclusive value="180"/>
 <xsd:minExclusive value="-180"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="absolutePosition_t">
 <xsd:sequence>
 <xsd:element name="latitude"
 type="vmt:latitudeBounds_t"/>
 <xsd:element name="longitude"
 type="vmt:longitudeBounds_t"/>
 <xsd:element name="altitude"
 type="xsd:double"/>
 <xsd:element name="mgrs" type="xsd:string"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

Figure 3: Generalized VICTORY Absolute Position

Type (XSD)

#ifndef VICTORYTYPESDDS_IDL
#define VICTORYTYPESDDS_IDL
module VICTORY
{
 module Types
 {
 struct doubleMeasurement_t
 {
 double value;
 double uncertainty;
 boolean estimated;
 boolean valid;
 }; //@top-level false

 //
 // Military Grid Reference System
 //
 struct MgrsPos_t
 {
 string<10> gridZoneDesignator;
 long easting;
 long northing;
 }; //@top-level false

 struct AbsPos_t
 {
 doubleMeasurement_t latitude;
 doubleMeasurement_t longitude;
 doubleMeasurement_t altitude;
 boolean hasMgrs;
 MgrsPos_t mgrs;
 };#pragma keylist AbsPos_t
 }; //Types
}; //VICTORY
#endif

Figure 4: Generalized VICTORY Absolute Position
Type (IDL)

VICTORY Data-Bus (VDB)

VDM SOAP

DAGR

VICTORY
Position Service

Mapping
Application

VDM

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 5 of 7

The mapping between XML and IDL constructs is not one-
to-one so some modifications were made in order to port the
functionality of the XSD type to IDL. In particular
VICTORY type definitions make extensive use of XSD
optional elements and this concept does not exist within
IDL. This functionality can be implemented in IDL using
presence indicator flags. Some OMG-DDS vendors provide
tools for converting XSDs to IDL, but at the time of this
experiment, those tools did not support all elements used
within the VICTORY XSDs (i.e. auto-generation of IDLs
failed).

Lines of code in Figure 4 that contain the # and //@ tokens
declare vendor-specific IDL pre-processor directives. Some
of the data definition concepts described in the DCPS API
appear to be missing from the IDL standard and have
vendor-specific support through the use of IDL pre-
processor directives. For example, OMG-DDS allows user-
defined types to be keyed on data members. This means that
different data values with the same key value represent
successive values for the same instance, while different data
values with different key values represent different instances
[4]. For example, to add a keyed index field id to
AbsPos_t, for RTI Connext DDS the directive //@key must
be placed next to the declaration of id, and for PrismTech
OpenSplice the directive #pragma keylist AbsPos_t id must
be placed after the declaration of AbsPos_t. The difficulty
these issues posed during our experiment was insignificant.

Replacing the VDM Interface with OMG-DDS
Publisher

After IDLs were created and the C++ bindings were
generated, the VDM interfaces in the VICTORY Position
Service and subscriber application were replaced with DDS
publishers and subscribers. The steps taken to replace the
VDM publisher with a DDS publisher were:

1. Declare and initialize DDS Domain Participant, Topic,

QoS, Publisher, and Data Writer.
2. Map the VICTORY Position Service internal C++

data structures using the assignment operator and the
bindings created from the IDL files.

3. Call the DDS Data Writer write() method to publish
the data on the VDB.

The steps for replacing the VDM subscriber with a DDS
subscriber were:

1. Declare and initialize DDS Domain Participant, Topic,
QoS, Subscriber, and Data Reader.

2. Map the VICTORY Position Service DDS data to
internal C++ data structures.

3. Call the DDS Data Reader take() method to retrieve
the received samples.

Figure 5 shows the resulting data flow for the modified
VICTORY services. OMG-DDS was implemented in our
VICTORY Position Service using ~100 lines of C++ code.

Figure 5: Modified VICTORY Service Data Flow

This preliminary experiment used OMG-DDS to replace the
basic VDM behavior so default QoS was sufficient. The
QoS settings and other attributes used during this experiment
are outlined in Table 1.

QoS & Attributes Writer Reader

Deadline Infinite Infinite

Domain ID 0 0

Durability Volatile Volatile

Latency Budget 0 sec 0 sec

Liveliness duration Infinite Infinite

Liveliness kind Automatic Automatic

Ownership Shared Shared

Reliability Reliable
Best
Effort

Topic Position Position

Type AbsPos_t AbsPos_t

Table 1: Effective QoS and Other Attributes

OMG-DDS DCPS API Standard
A goal of this experiment was to determine how many

code changes were required to support both RTI and
PrismTech OMG-DDS implementations. Both
implementations were integrated into the CMake build tool
used for building TARDEC’s VICTORY reference
implementation. Vendor specializations related to the DCPS
API only occurred in two places during this experiment and
these specializations related to how type-support was
implemented and the way that general purpose DataWriters
were cast to specialized DataWriters using the narrow()
method. Figure 6 and 7 show excerpt code listings that

VICTORY Data-Bus (VDB)

DDS SOAP

DAGR

VICTORY
Position Service

Mapping
Application

DDS

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 6 of 7

illustrate the minor changes that were incorporated to
support both RTI and PrismTech OMG-DDS
implementations.

#ifdef RTI
ddsTypeName =
 VICTORY::Types::AbsPos_tTypeSupport::
 get_type_name();
ddsRetCode =
 VICTORY::Types::AbsPos_tTypeSupport::
 register_type(
 ddsDomParticipant, ddsTypeName);
#endif

#ifdef PRISMTECH
VICTORY::Types::AbsPos_tTypeSupport absPosTs;
ddsTypeName = absPosTs->get_type_name();
ddsRetCode = absPosTs->register_type(
 ddsDomParticipant, ddsTypeName);
#endif

Figure 6: Vendor Specific Syntax for Type-Support

Constructs (C++)

#ifdef RTI
ddsSpecificWriter =
 VICTORY::Types::AbsPos_tDataWriter::narrow(
 ddsDataWriter);
#endif

#ifdef PRISMTECH
ddsSpecificWriter = VICTORY::Types::
 AbsPos_tDataWriter_narrow(ddsDataWriter);
#endif

Figure 7: Vendor Specific Syntax for DataWriter

Casting (C++)

OMG-DDS RTPS Interoperability Standard

Another objective for this experiment was to determine
how much effort was required to achieve interoperability
between different vendor implementations of OMG-DDS.
Periodically, OMG-DDS vendors conduct interoperability
demonstrations and the reports indicate that getting different
OMG-DDS implementations to work together is possible,
they do not indicate how much work was required to achieve
interoperability.

We tested every combination of RTI and PrismTech
publishers and subscribers for the modified VICTORY
Position Service. This turned out to be a simple task
because different vendor publishers and subscribers residing
on separate hosts communicated directly out-of-the-box.
For publishers and subscribers communicating on the same
host we encountered only one difficulty. RTI provides a
shared memory transport option, which provides high-
performance communication between RTI publishers and
subscribers on the same computer (shared memory is one of
the fastest forms of inter-process communication). This is a

default setting and needed to be disabled before PrismTech
and RTI publishers and subscribers could communicate on
the same host. The following line of C++ code was added to
disable the shared-memory transport in both the publisher
and subscriber.

#ifdef RTI
ddsDomPartQos.transport_builtin.mask =

 DDS_TRANSPORTBUILTIN_UDPv4;
#endif

VDM AND OMG-DDS APPROACHES COMPARED
The previous sections examined both VDM and OMG-

DDS and both approaches appear to be well-suited for
satisfying the requirements of integration problems that are
likely to fall under the scope of VICTORY as it is currently
defined. Table 2 summarizes a number of considerations for
comparing the two approaches.

 VDM OMG-DDS

COTS Available No Yes

Lines of Code 1500 100

Licensing Issues No Yes

Open Standard Yes Yes

Standard API No Yes

Standard Wire Protocol Yes Yes

Unbrokered Architecture Yes Yes

Table 2: Aspects of VDM and OMG-DDS Compared

The VDM approach is relatively simple and developers

will likely be familiar with all of the tools and concepts
needed to implement it. Vehicle programs should not be
hampered by licensing issues during the acquisition process
because the tools required for this approach are standard for
most platforms and programming languages, and this could
be made even easier if the VICTORY community develops a
set of libraries. The VDM approach is limited by the
behavioral model that it was designed to support, and while
it is simple, the software development effort required to
support it is not insignificant.

OMG-DDS is a powerful and versatile tool that is capable
of supporting more complex pub/sub behavior. OMG-DDS
is straightforward to use in a simple case but when more
advanced features are used it can become very complicated
(e.g. user manuals and API references are ~1000 pages).
OMG-DDS fundamentals can be learned in several days, and
then it is very easy to implement VDM-like functionality.
The number of lines of code an application developer needs
to write is approximately 1/15 of that required for a VDM
implementation (using C++). The licensing of OMG-DDS

Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

UNCLASSIFIED
Open Management Group (OMG) Data-Distribution Service (DDS) as a Data Transport for Vehicular Integration for

C4ISR/EW Interoperability (VICTORY) Services, Elliott, Siddapureddy, & Williams
Page 7 of 7

could pose a problem for vehicle programs because pricing
varies based on tools, developer seats, OS, CPU architecture,
technical support, etc. The standard API and wire protocols
should provide integrators with a large selection of
implementations and should help them avoid vendor lock-in.

SUMMARY

The VDM and OMG-DDS messaging approaches both
appear to be suitable approaches for satisfying the
integration requirements which are likely to occur within the
current scope of the VICTORY architecture. It is important
to note that that neither approach eliminates the multitude of
difficult design decisions that integrators will still need to
address. While the VDM approach may not be robust or
flexible enough to satisfy some of the more demanding
messaging behavior required of control and/or real-time
applications, it is still an acceptable choice given the scope
of VICTORY. The simplicity and lack of licensing issues
surrounding the VDM approach may allow vehicle programs
to deliver VICTORY capability in a relatively short time
frame. The VDB provides a high-performance
infrastructure, capable of hosting more demanding

distributed applications and once the basic capability is
realized, the VICTORY community should consider
leveraging the power of OMG-DDS as an incremental
capability or as part of a VICTORY real-time extension.

REFERENCES
[1] VICTORY Standards Support Office (VSSO),

VICTORY Architecture - Version A, VSSO, 2011,
http://www.victory-standards.org/

[2] VSSO, VICTORY Specifications – Version 1.0, VSSO,
2011. http://www.victory-standards.org/

[3] Hohpe, G. and Woolf, B., Enterprise Integration Patterns,
Addison-Wesley, 2003.

[4] Vinoski, S. Advanced Message Queuing Protocol, IEEE
Internet Computing, November 2006

[5] OMG, Data Distribution Service for Real-Time Systems
Version 1.2, The Open Management Group, 2007,
http://www.omg.org/spec/DDS/1.2/PDF/

http://www.victory-standards.org/
http://www.victory-standards.org/
http://www.omg.org/spec/DDS/1.2/PDF/

	ABSTRACT
	INTRODUCTION
	PUBLISH-SUBSCRIBE OVERVIEW
	Java Message Service (JMS)
	Advanced Message Queuing Protocol (AMQP)
	Open Management Group Data-Distribution Service (OMG-DDS)

	VICTORY DATA MESSAGING
	INSERTION OF OMG-DDS INTO VICTORY SERVICES
	VICTORY 1.0 Core Service Software Architecture
	Porting VDM Interfaces to OMG-DDS Interfaces
	Replacing the VDM Interface with OMG-DDS Publisher
	OMG-DDS DCPS API Standard
	OMG-DDS RTPS Interoperability Standard

	VDM AND OMG-DDS APPROACHES COMPARED
	SUMMARY
	REFERENCES

